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We study the behavior of the chemical reactionsA+A→A+S andA+A→S+S (where the reactive species
A and the inert speciesS are both assumed to be immobile) embedded on Bethe lattices of arbitrary coordi-
nation numberz and on a two-dimensional(2D) square lattice. For the Bethe lattice case, exact solutions for
the coverage in theA species in terms of the initial condition are obtained. In particular, our results hold for the
important case of an infinite one-dimensional(1D) latticesz=2d. The method is based on an expansion in terms
of conditional probabilities which exploits a Markovian property of these systems. Along the same lines, an
approximate solution for the case of a 2D square lattice is developed. The effect of dilution in a random initial
condition is discussed in detail, both for the lattice coverage and for the spatial distribution of reactants.
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I. INTRODUCTION

A rigorous description of the dynamics of the relevant
macrovariables in reaction-diffusion systems requires a
probabilistic multilevel approach retaining the essential fea-
tures of the underlying many-body problem[1–3]. In this
coarse-grained picture, typical macrovariables such as con-
centrations are no longer deterministic, but rather stochastic
quantities. In a number of typical situations, the equations
governing the dynamics of the mean concentrations turn out
to be identical with the classical law of mass action. In the
absence of external asymmetries or of symmetry-breaking
instabilities, the latter can be regarded as a mean-field(MF)
law, in the sense that each part of the system is assumed to
interact with the whole bulk at all times by means of an
effective field which does not account for spatial effects.

The above classical approach can be regarded as a good
approximation as long as the characteristic time associated
with the mean free path is short compared to the mean reac-
tion time within the typical interaction radius. This is only
the case if the system is well mixed at all times, either
through external stirring or through fast internal diffusion.
The opposite situation corresponds to the diffusion-
controlled limit, where each reactant typically explores a sig-
nificant portion of space before undergoing a reactive colli-
sion, and the way in which reactants are distributed on a
microscopic scale starts to become important for the deter-
mination of macrovariables such as global concentrations or,
in the case of a lattice system, the coverage in the different
species. In such cases, classical MF approaches fail to de-
scribe the onset of inhomogeneous fluctuations induced by
the intrinsic chemical noise of the system. Such fluctuations
are nowadays directly observable at nanometric scales with
the help of STM and FIM microscopy techniques[4,5] and
can be enhanced by specific geometric constraints and/or in
low dimensions(e.g., catalytic surfaces), where external stir-
ring is difficult and diffusion inefficient; eventually, they
may give rise to nonclassical effects such as memory of the

initial condition, self-ordering phenomena, etc.[6]. Elucidat-
ing the role of geometry in this context is of great theoretical
and practical interest in view of the recent progress in the
development of nanoscale supports.

Fluctuation-induced effects become even stronger in sys-
tems with immobile reactants, the object of the present paper.
The particular systems we shall investigate here are the on-
lattice reactionsA+A→A+S andA+A→S+S with nearest-
neighbor interactions, whereA andS denote, respectively, a
site occupied by the reactive species(“occupied site”) and
the inert species(“empty site”), both assumed to be immo-
bile. Popularly, these reactions are termed coalescence(CR)
and annihilation reaction(AR), respectively. Various workers
have intensively investigated the CR[7–9] and the AR
[8,10–14] in the diffusion-controlled limit. Besides a series
of applications for nucleation and aggregation systems
[15,16], the diffusion-controlled CR has also been recently
used as a model for exciton fusion in polymers and molecu-
lar crystals[17–19], while the AR model provides a basic
description for recombination processes and exciton annihi-
lation [19,20]. In the immobile reactant limit, the AR model
has been used, e.g., to study free radical recombination on
surfaces[21], cyclization reactions in polymers[22], and col-
loid deposition problems[23], among other applications.
Note the formal similarity of this model and models for
dimer random sequential absorption(DRSA) [24,25]. In such
DRSA models, the deposition of a dimer on two empty sites
is dual to the removal of two neighboring particles from the
lattice upon reactions in the AR model, i.e., empty sites play
the role of occupied sites and vice versa. There exists also a
(less obvious) mapping between the CR model and a particu-
lar case of random monomer filling with nearest-neighbor
cooperativity[26–28]. However, most studies concerning the
above RSA models were performed for a fixed initial condi-
tion. Typically, the latter corresponds to a situation where all
lattice sites are vacant, which in the dual picture of our
model is equivalent to a fully covered lattice. In contrast, we
shall consider here the general case in which the lattice is
partially filled initially and study how this affects the subse-
quent dynamics and steady state of the system.

Previous studies have shown that in the immobile reactant
limit, the one-dimensional CR and AR models with nearest-*Electronic address: eabad@ulb.ac.be
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neighbor interactions are characterized by an exponential de-
cay of the mean coverageustd in the reactive species to a
nonergodic set of invariant states, as opposed to the empty
state predicted by the MF equation[29,30]. In the present
work, we extend these results to the case of a partially filled
Bethe lattice with arbitrary coordination number. In such
loopless lattices, the relevant hierarchy of probabilities can
be truncated exactly using a shielding(Markovian) property
of the conditional probabilities for the state of a given site.
This method is used to generalize previous results by Evans
[31] and by Majumdar and Privman[32]. Next, we treat the
case of a 2D square lattice by performing an expansion based
on the shortest unshielded path approximation developed by
Nord and Evans for a series of RSA models[33]. The results
for the asymptotic coverage are then compared with Monte
Carlo(MC) simulations. The effect of the initial condition on
the spatial ordering induced by the reaction is also discussed
by studying the dynamical behavior of the conditional prob-
abilities and the associated fluctuation correlations. In the
last section, we summarize the main conclusions and outline
possible extensions of our work.

II. THE CR AND THE AR MODEL IN BETHE LATTICES:
EXACT SOLUTION VIA SHIELDING PROPERTY

As a starting point, we consider an ensemble of Bethe
lattices with coordination numberz (the casez=2 corre-
sponds to an infinite 1D lattice). In each lattice, sites are
initially occupied at random with probabilityp [equal to the
initial lattice coverageus0d]. We then let the particles interact
according to the CR(AR) scheme with nearest-neighbor in-
teractions specified above. By construction, the resulting sta-
tistical system will be translationally invariant at all times.
Let us absorb the reaction rateR into the time scale by in-
troducing the dimensionless time variablet;Rt. Let us de-
note byPkstd the probability thatk randomly chosen nearest-
neighbor sites in a given lattice are all simultaneously
occupied(k-site cluster). The evolution equations for the en-
semble probabilitiesPk read[32]

dPk

dt
= − sk − 1dPk −

n

2
szk− 2k + 2dPk+1,

k = 1,2,…, s1d

wheren=1,2 for the CR and the ARmodel, respectively.
The first term on the right-hand side represents the de-

struction of ak-site cluster by interaction between two par-
ticles inside the cluster and is proportional to the number of
internal bondss=k−1 bondsd. The second term represents
the destruction of ak-site cluster due to the disappearance of
a particle inside the cluster upon interaction with a neighbor-
ing particle just outside the cluster. Such an event is only
possible if ask+1d-site cluster preexists, implying that this
term is proportional toPk+1. Its coefficient is proportional to
the number of bonds between thek cluster sites and external
neighboring sitess=zk−2k+2d. The different value ofn
stems from the fact that thek-site cluster is only destroyed if
the particle vanishes upon interaction with a filled neighbor
outside the cluster. In the CR case, this only happens one

time out of two, since in a single event the particle inside the
cluster has the same probability of vanishing as the neighbor
particle outside the cluster.

We now seek a special solution of the hierarchy(1) cor-
responding to our initial condition. One can easily check that
in our casePks0d=pk. As it turns out, the hierarchy can be
exactly truncated after the first two equations,

dP1

dt
= −

n

2
zP2, s2ad

dP2

dt
= − P2 − nsz− 1dP3. s2bd

d

dt
ln Q• = − n

z

2
Q••”, s3ad

d

dt
ln Q••” = − 1 +

nz

2
Q••” − nsz− 1dQ••”•”, s3bd

where the notationQ•; P1 has been used. Now, in a Bethe
lattice conditioning sites specified as occupied “shields,” i.e.,
clusters belonging to disjoint irreversible paths starting from
the occupied site, evolve independently of each other.1 As a
consequence, one has[27,31,34]

Q••” = Q••”•” = Q••”•”•” ¯ , etc., s4d

i.e., the memory of the system is limited to the nearest-
neighbor site. In this sense, the subset of occupied sites can
be said to display(first-order) spatial Markovianity[35].

Using the shielding property(4), Eqs.(3) become a closed
two-variable system. Since the system is translationally in-
variant, the local probabilityQ• is identical with the global
coverageu. The solution of Eqs.(3) reads

Q•std = ustd

= pF1 +
sz− 2d

2
nps1 − e−tdG−z/sz−2d

, s5ad

Q••”std =
pe−t

1 +
sz− 2d

2
nps1 − e−td

. s5bd

Thus, the global coverage attains the asymptotic value

1In the special case of a 1D latticesz=2d, this means that sites to
the left of the occupied site do not “see” those on the right-hand
side.
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uS; us`d = pF1 +
z− 2

2
npG−z/sz−2d

. s6d

Regardless of the value ofz, uS increases monotonically
with increasingp for the CR model, while in the AR model
it follows a non-monotonic behavior with a universal maxi-
mum atp= 1

2. This may be related to the fact that the mean
asymptotic number of particles yielded by islands
(5disconnected clusters) created by the ongoing reactions
does not grow monotonically with the island size, as opposed
to the CR case[36,37]. Thus, larger islands characteristic of
high values of the initial coveragep may eventually yield a
lower number of particles than smaller ones. In particular
two-particle islands are known to disappear from the system,
while one-particle islands survive forever.

As expected,uS decreases strongly as a function ofz,
approaching a zero value whenz→`. This is in agreement
with our intuitive expectation that the system must approach
the classical MF prediction with increasing connectivity.

Equation(5a) generalizes previous results by Evans for
the DRSA problem equivalent to thep=1 case[31] and Ma-
jumdar and Privman for then=2 case[32]. The special case
of a 1D lattice is obtained whenz→2+. In this limit, Eqs.(5)
become

ustd = p expsnpfe−t − 1gd, s7ad

Q••”std = pe−t. s7bd

The conditional probabilityQ••” is the same for both reac-
tion schemes, as opposed to then-dependent lattice cover-
age. The latter approaches the nonvanishing asymptotic
value

uS= us`d = pe−np s8d

in contrast to the prediction of the MF solutionuMFstd
=p/ s1+nptd. Note that forn=2 and p=1, the asymptotic
coverage predicted by Eq.(8) is compatible with Flory’s fa-
mouse−2 prediction for the isomorphic dimer filling problem
[38,39].

III. APPROXIMATE EXPANSION VERSUS “EXACT“
MONTE CARLO RESULTS ON A 2D SQUARE LATTICE

We now turn to the task of finding a suitable approxima-
tion scheme for the AR and the CR in lattices containing
loops. The complex topology of particle clusters does not
allow for an exact solution in this case. One must therefore
resort to truncated expansions in terms of conditional prob-
abilities and to MC simulations.

As in the 1D case[30], an Ursell expansion of the cluster
probabilities using fluctuation correlation functions does not
yield good results here either, since multisite fluctuation cor-
relations do not decay monotonically with an increasing
number of sites and are therefore non-negligible(see Sec.
III B ). On the other hand, neglecting the cluster probabilities
beyond a certain order may provide good agreement with
simulations in the low-p regime, but the agreement is much
worse whenp<1. In order to obtain a reasonable agreement

in the whole range ofp values, we must refine the truncation
procedure inspired by a(spatial) Markovian property of the
system analogous to the one observed for the 1D system:
while in 1D a single occupied site disconnects the reactive
dynamics in the left and right half lines, in 2D an infinite line
of sites specified as occupied decomposes the lattice into two
independently evolving sublattices. More generally, it can be
shown that for two-site processes such as the CR and the AR
model in regular lattices of arbitrary Euclidean dimensional-
ity, “hyperwalls” of thickness equal to one lattice site shield
one side of the lattice from the other[24].

Recently, Nord and Evans used this generalization of the
Markovian property as a starting point to devise an expan-
sion scheme in terms of conditional multisite probabilities
for a DRSA model on a square lattice[33]. The main idea is
to neglect the influence of conditioning occupied sites be-
yond a certain cutoff distancedc (measured in lattice spac-
ings). However, the calculation ofdc should be tailored so as
to reflect the shielding property of occupied sites. The effec-
tive distance between an occupied site and a•” site should be
defined as the shortest “unshielded” path which is not
blocked by other•” sites. For instance, in the particular case
to be studied here(an infinite 2D square lattice), the distance
dc between the • site and the rightmost•” site associated with
the (translationally invariant) probabilities Q••” ,Q••”•”, and
Q• •”

•” •”

is, respectively, one, four, and five lattice spacings.

The case studied by Nord and Evans corresponds to the
AR model with an initially full lattice. We shall now extend
their calculations to the AR and the CR models with an ar-
bitrary initial lattice coveragep. The starting points to per-
form the expansion are again the evolution equations for
clusters of occupied sites. The first few equations for the
evolution of low-order clusters are

dP•

dt
= − 2nP••, s9ad

dP••

dt
= − P•• − nP••• − 2nP• •

•

, s9bd

dP•
•

dt
= − 2nP• •

•

− 2nP• •
•

, s9cd

dP• •
•

dt
= − 2P• •

•

− nP• • •
•

− nP• • •
•

− nP• •
• •

− nP• •
• •

, etc. s9dd

Rewriting the first four equations of this hierarchy in terms
of the Q’s, we obtain

d

dt
ln Q• = − 2nQ••”, s10ad
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d

dt
ln Q••” = − 1 −nQ••”•” − 2nQ• •”

•”

+ 2nQ••”, s10bd

d

dt
ln Q• •”

•”

= − 1 +nQ••”•” + 2nQ• •”
•”

− nQ• •” •”
•”

− nQ• •” •”
•”

− nQ• •”
•” •”

− nQ• •”
•” •”

, s10cd

d

dt
ln Q• •”

•”

= − 2 + 2nQ• •”
•”

+ 2nQ• •”
•”

− nQ• •” •”
•”

− nQ• •” •”
•”

− nQ• •”
•” •”

− nQ• •”
•” •”

. s10dd

A. First-order approximation

Let us first consider the first-order approximation, i.e., we
neglect those•” sites beyond a distance farther than one lattice
spacing. We then haveQ••”•”→Q••” ,Q• •”

•”

→Q••”, and Eqs.(10)

lead to the closed set of equations

d

dt
ln Q• = − 2nQ••”, s11ad

d

dt
ln Q••” = − 1 −nQ••”. s11bd

Taking into account the initial conditionQ•s0d=Q••”s0d=p,
these equations are readily integrated to obtain

Q•std = P•std =
p

f1 + nps1 − e−tdg2 , s12ad

Q••”std =
pe−t

1 + nps1 − e−td
. s12bd

Notice that this result for the lattice coverageP• and the
conditional probabilityQ••” is identical with the exact result
in a Bethe lattice withz=4 [cf. Eq. (5)].

The asymptotic result

uS= P•s`d =
p

s1 + npd2 s13d

can be expanded in powers ofp to obtain

uS= p − 2np2 + 3n2p3 + Osp4d. s14d

The different terms on the right-hand side are recovered by a
somewhat rougher truncation scheme neglecting all cluster
probabilities involving more than a given number of sites
kmax in Eqs. (9). Note that the term inp2 on the right-hand
side of the formula(14) for the dilute case contains an addi-
tional factor 2 with respect to the expansion of the 1D result
(8) for small p. This suggests that, in a hypercubic lattice
with coordination numberz, the prefactor of this term might
have the formnz/2, as is the case in the corresponding ex-
pansion of Eq.(5a) for a Bethe lattice.

Let us now compare the asymptotic values of the cover-
ageuS obtained from the first order truncation of the cluster
hierarchy with “exact” results from MC simulations. The
MC algorithm for the AR and the CR model is performed as
follows. At the beginning of each statistical realization, the
sites of anN3N periodic square lattice(torus) are randomly
filled with particles until a predetermined global coveragep
is attained. The elementary time stepdt is chosen in such a
way that each lattice site is visited once on average after one
time unit Dt, i.e., dt;Dt /N2. At each time step, a sitei and
one of its four nearest-neighbor sitesi8 are chosen at random.
If both are occupied, the reaction step takes place with prob-
ability pR=R dt=dt (wheredt=Dt /N2), i.e., the particle at
site i is removed from the lattice in the CR case, while in the
AR model both sitesi and i8 are vacated. Fortunately, the
convergence is rather fast with increasing linear sizeN and
number of statistical realizationsnreal. The limiting valuesuS
given in Tables I and II correspond toN=200 andnreal
=5000 and the accuracy is at least equal to 10−5.

Figure 1 shows the coverageu as a function of the dimen-
sionless time for the CR model. For an initially full lattice, a
comparative plot between the 1D solution, the MC result on
the 2D square lattice, and the simple MF approach is dis-
played. In the square lattice case, the mean coverage does not
significantly change for timest<10 and above, and its lim-
iting value is found to be 0.2549, about 30.7% smaller than
the 1D resulte−1<0.3679. As expected, the higher connec-
tivity of the 2D lattice(z=4, in contrast toz=2 for the 1D
case) leads to an increased number of reactive events per
occupied site, and the system gets closer to the empty state.
As in the 1D case, the long-time decay to the final state
appears to be well fitted by an exponential.

In the AR case, the simulation yields the exact valueuS
=0.0932 for an initially full lattice, off by about 31.1% from
the exact value in 1D. Figure 2 shows the stationary cover-
ageuS as a function ofp for both the CR and the AR. The
dependence is monotonic for the CR, whereas a maximum at
p=0.5 is observed in the AR case. As in the case of a Bethe
lattice, this generic dependence on the initial coverage is

TABLE I. A comparison between the values ofuS obtained from
MC simulations and the approximated values obtained by trunca-
tion of the hierarchy for the CR model.

p MC simulation
Truncation
(first order)

Truncation
(second order)

0.05 0.04535379 0.04535147 0.04535233

0.1 0.08265606 0.08264463 0.08265592

0.2 0.1390146 0.1388889 0.1390138

0.3 0.1779778 0.1775148 0.1779583

0.4 0.2050887 0.2040816 0.2050757

0.5 0.2239603 0.2222222 0.2223642

0.6 0.2369787 0.2343750 0.2369514

0.7 0.2456631 0.2422145 0.2456311

0.8 0.2510806 0.2469136 0.2510572

0.9 0.2540033 0.2493075 0.2539584

1 0.2549411 0.2500000 0.2548402
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likely to be robust in hypercubic lattices with arbitrary coor-
dination number(cf. Fig. 3 for the AR case).

For p=1 and the CRsn=1d, we getuS=1/4=0.25 from
Eq. (13), which is smaller than the simulation value by
19.2%(cf. Fig. 4 and Table I), whereas forn=2, the formula
(13) yields uS=1/9=0.1111, which is larger than the exact
numerical value by 16.1%(cf. Fig. 5 and Table II). Thus, for
a sufficiently largep, the first-order truncation(Bethe lattice
solution) underestimates the asymptotic coverage in the CR
case and overestimates it in the AR case.

On the other hand, for sufficiently low values ofp the
approximation gets better in both cases. Thus, forp=0.5 the
simulation value is larger than the approximated one by just
0.8% for the CR(cf. Table I). The fact that, for a given order
of truncation, the accuracy increases monotonically withp in
the parametric regionp!1 corresponding to a dilute system
is by no means surprising: in the dilute limit, thez=4 Bethe
lattice becomes a good approximation for the 2D square lat-
tice, since “lattice animals” containing loops become rare.

B. Second-order approximation

For the second-order approximation, we take the whole
set (10) as a starting point and make the approximations

Q••”•”,Q• •” •”
•”

,Q• •”
•”

→ Q••”; Q• •” •”
•”

,Q• •”
•” •”

→ Q• •”
•”

;

Q• •”
•” •”

→ Q• •”
•”

,

thereby retaining all unshielded paths with lengths smaller
than or equal to two lattice spacings. With this approxima-
tion, we get from Eqs.(10)

d

dt
ln Q• = − 2nQ••”, s15ad

d

dt
ln Q••” = − 1 +nQ••” − 2nQ• •”

•”

, s15bd

d

dt
ln Q• •”

•”

= − 1 −nQ• •”
•”

, s15cd

d

dt
ln Q• •”

•”

= − 2 +nQ••” − 2nQ• •”
•”

+ nQ• •”
•”

. s15dd

An analytical solution for these equations does not seem
possible, but they can be integrated numerically. The results
for the stationary coverage are given in Tables I and II. They
are significantly better for the CR case; the deviation from
the numerical result is maximal forp=1 and is about −0.4%;
its absolute valueuDuS/uSu diminishes monotonically with
decreasingp. In contrast, the maximal deviation forp=1 in
the AR case makes about 5.3%(cf. Fig. 6).

Better approximations can be obtained at higher orders,
but the number of conditional probabilities to be taken into
account grows dramatically. It then becomes necessary to
automate the generation of the hierarchical equations. For
instance, to third order one has 24 different probabilities, and
to fourth order, 766[33].

Nevertheless, the approximate conditional probabilities
obtained from the second-order hierarchy(15) are already in
good agreement with exact simulation results, both at the
level of the stationary coverage and at the level of the time
evolution(data not shown). Interestingly, the dynamics turns
out to be qualitatively different depending on the value ofn.
In the CR case, the inequalityQ•.Q••” holds for all times,
while in the AR case this is only true provided that the initial
coverage is sufficiently low, i.e., forp,1/2. This behavior
is observed in Fig. 7, which also displays the time evolution
of the other conditional probabilities(for typographical rea-
sons, the symbolsQ1, Q2, Q3, and Q38 used in the legend
represent, respectively, the quantitiesQ• ,Q••” ,Q• •”

•”

, andQ• •”
•”

).

In contrast, abovep=1/2 the ARsystem displays a cross-
over between a short time regime for whichQ•,Q••” and a
long time regime withQ•.Q••” beyond ap-dependent cross-
over time(see Fig. 8). That is, for short times the probability
to find a site occupied given that its neighbor is occupied is
larger than for a randomly chosen site with no previous in-

TABLE II. A comparison between the values ofuS obtained
from MC simulations and the approximated values obtained by
truncation of the hierarchy for the AR model.

p MC simulation
Truncation
(first order)

Truncation
(second order)

0.05 0.04131765 0.04132231 0.04132796

0.1 0.06952005 0.06944444 0.06950689

0.2 0.1025630 0.1020408 0.1025378

0.3 0.1185036 0.1171875 0.1184757

0.4 0.1255734 0.1234568 0.1255286

0.5 0.1274785 0.1250000 0.1274201

0.6 0.1259282 0.1239669 0.1259275

0.7 0.1217432 0.1215278 0.1219250

0.8 0.1150304 0.1183432 0.1158427

0.9 0.1057193 0.1147959 0.1078826

1 0.09318323 0.1111111 0.09812664

FIG. 1. Comparative plot displaying the analytical 1D solution
for the coverage, the 2D simulation result on a square lattice, and
the MF solution for the CR model.
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formation on the state of the neighbor site, whereas for long
times the opposite is true. Remarkably enough, the qualita-
tive behavior of both reaction schemes appears to be univer-
sal, in the sense that it remains the same in Bethe lattices of
arbitrary coordination number[cf. Eqs.(5)].

As far as higher-order conditional probabilities are con-
cerned, the inequalityQ•.Q••”.Q• •”

•”

.Q• •”
•”

holds at all

times both in the CR case and in the dilute AR case with
p,1/2 (cf. Fig. 7). However, for sufficiently short times we
again observe a departure from this behavior at higherp in
the AR case. In fact, all three conditional probabilities
Q• ,Q••” ,Q• •”

•”

become larger thanQ• for a sufficiently largep

(cf. Fig. 8). In this regime, the detailed behavior of the above
Q probabilities with respect to each other is rather complex
and shall not be discussed further here.

In order to interpret some of the above results, let us first
characterize the occupation of a given sitei by an occupation
number ni (equal to one if the site is occupied and zero
otherwise). The fluctuationdni is defined as the deviation
from the average occupation in a given statistical realization,
i.e., dni =ni −knil. A special kind of two-site fluctuation cor-
relation is thenfm;kdni dni+ml, where i and i +m are two
sites separated bym bonds along a 1D path. By definition,
fm is translationally invariant and depends only on the dis-
tancem.

The behavior of the conditional probabilities in our hier-
archy is given by the cluster probabilitiesP. In turn, the
latter are related to the fluctuation correlations, which mea-
sure the reaction-induced ordering in the system. For ex-
ample, the sign of the differenceQ•−Q••” is the same as the
sign of the nearest-neighbor two-site fluctuation correlation

FIG. 2. Comparative plot showing thep dependence of the
asymtotic coverage for the CR and the AR models on a 2D square
lattice.

FIG. 3. Nonmonotonic behavior of the final coverage as a func-
tion of the initial coveragep in the AR case. The continuous line
displays the 1D analytic result, while the dots correspond to simu-
lation results on the 2D square lattice. The dot-dashed curve repre-
sents a spline fit of the MC results.

FIG. 4. Exact simulation results for the CR vs the first two
orders of the shortest unshielded path approximation(the first order
corresponds to a Bethe lattice). Note the good agreement of the
second-order results with the simulation over the wholep range.

FIG. 5. Exact simulation results for the AR vs the first two
orders of the shortest unshielded path approximation(the first order
corresponds to a Bethe lattice). Note that the agreement of the ap-
proximate results with the simulation in the saturation region
p<1 is worse than in the CR case.
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f1=P••−P•
2=sQ••”−Q•dQ•. In all casesf1,0 ast→`, since

two-particle clusters disappear. In Fig. 9, MC computations
for the dynamical behavior of the two-site correlations
f1, f2, f3 and the three-site correlationh=kdni dni+1 dni+2l
in the dilute AR casesp,

1
2

d are shown. As in the CR case,
one hasf1,0 for all times, i.e.,P••. P•

2. However, as soon
as p.1/2, one hasf1.0 for sufficiently short times(see
Fig. 10). In other words, the probability to find a pair of
neighboring sites simultaneously occupied is higher than if
both sites are chosen at random. Most probably, the reason is
that for short times the typical size of particle islands is still
relatively large, and so is the value ofP••; however, the
reaction-induced growth of empty-site clusters takes place at
a higher rate than in the CR case. Thus, the probability that
one finds an empty site beyond a certain correlation length
from a given particle is comparatively high, thereby decreas-
ing the value ofP•

2.
As for the behavior off2, f3, andh, both schemes again

display very similar qualitative features in the low-p regime.
The numerical plots in Fig. 9 suggest thatf2.0 and f3,0
for all times (for very short times, however, our precision
does not allow us to determine the sign of the correlation
functions). In any case, this holds for the stationary values of

these quantities ast→`. In terms of conditional probabili-
ties, this means thatQ•-•”.Q• andQ•- -•”,Q•, where “-” de-
notes a site in an unspecified state. Notice also that the ab-
solute value of the three-site correlationuhu becomes
significantly larger thanuf3u. Moreover, for yet smaller values
of the initial coverage,uhu may get larger thanuf2u. This sug-
gests that any expansion of the cluster probabilities retaining
only two-site correlation functions fails to describe the be-
havior, since long-range correlations propagate throughout
the system in the course of reaction. As a matter of fact, in
the 1D case such an expansion leads to a zero stationary
coverage to any order of the distance between sites[37].

At higher values ofp, the behavior is again modified in
the AR case. The functionsf2 and f3 change sign, and the
above inequalities for the conditional probabilities change
their direction. In contrast,h keeps its positive sign. How-
ever, in this case, it remains well below the absolute value of
the two-site correlationf3 for sufficiently large times.

The analysis presented in this subsection suggests that the
nature of the spatial self-ordering as a function of the initial
condition is rather complex(especially in the AR case) and
remains to be fully characterized.

FIG. 6. Relative error ofuS as a function ofp in the second-
order approximation for the AR case.

FIG. 7. Time evolution of the conditional probabilities obtained
from Eqs.(15) for the AR case in the dilute regimesp=0.25d.

FIG. 8. Time evolution of the conditional probabilities obtained
from Eqs.(15) for the AR case in the saturation regimesp=1d. The
legend uses the same notation as in Fig. 7.

FIG. 9. Dynamical behavior of the first three two-site fluctuation
correlation functions and the three-site correlation functionh in the
dilute AR casesp=0.25d. For this computation, we have performed
simulations over 5000 realizations on a 2003200 lattice.
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IV. CONCLUSIONS AND OUTLOOK

Using the analogy with RSA problems, we have used the
method of conditional probabilities to compute estimates for
the lattice coverage in the framework of a unifying descrip-
tion for two different types of irreversible binary reactions,
i.e., coalescence and annihilation. More traditional methods
based on a spatial cutoff of fluctuations fail here, since the
latter are propagated by the reactions over the whole system
size. In contrast, the method of conditional probabilities is
exact in 1D and branching media such as Bethe lattices,
which can be used as a starting point for density expansions
in other regular lattices[31] (in the dilute limit, the Bethe
lattice approximation should be good, since clusters with
loops are rare). A further advantage of the method is that it
provides a reasonable approximation for the “exact” simula-
tion results beyond the dilute limit, thereby allowing us to
obtain a fairly good estimate in the vicinity ofp=1 (corre-
sponding to the usual initial condition in RSA problems).
Remarkably, the expansion for the CR model in this regime

provides a better approximation than for the AR model.
The approach used in the present paper can also be ap-

plied to mixed systems combining both coalescence and an-
nihilation steps as well as to more complex kinds of initial
condition [40]. The correspondence between such models
and RSA problems may prove useful in the context of pre-
patterning of the substrate as a tool to improve self-assembly
in certain systems.

We have also seen that our model yields good results for
the fluctuation-induced dynamical behavior of the system.
The main conclusion is that the subsequent dynamics of the
spatial distribution is very sensitive with respect to the de-
tails of the initial condition, especially in the AR case, where
several types of crossovers for the correlation functions have
been identified.

Possible extensions of our work include a more complete
characterization of the transient behavior of the spatial dis-
tribution for the reactant species(and not only for the special
kind of correlation functions considered here) as well as its
dependence on the initial condition. However, exact decima-
tion at any scale is in principle only possible in one dimen-
sion [41] and probably also on Bethe lattices, but the analo-
gous problem on a lattice with loops still requires the use of
approximate techniques.

In the above context, it is also of interest to compare the
properties of such systems with those of their diffusion-
controlled counterparts. This work could then be further ex-
tended to other systems such as the two-species annihilation
A+B→S+S. This reaction is known to induce reactant seg-
regation at low dimensions and has been widely investigated
in the diffusion-controlled case[42–48], but its version with
immobile reactants[32] has not received much attention yet.
In particular, it would be interesting to see whether a shield-
ing property can also be derived in this case, at least for a
specific kind of initial conditions.
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